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Trace Element Stress in Roots

fürgen Hagemeyer and Siegmar-W. Breckle
' 'versity of Bielefeld, Bielefeld, Germany

I. INTRODUCTION

Heavy metals comprise a small part of the earth's
crust. Nevertheless, these elements play an important
role in plant ecology and affect growth and perfor-
mance of plant roots even in smali quantities as trace
elements. Trace elements can be divided into three
groups. Some of them are rare and others are more
abundant. The presence of both is not essential to
plants. The third, smaller group includes those ele-

ments that are essentiai lbr some or for ail organisms.
The dose response curves of the effects of essential

trace elements on organisms consist of three parts:
at very low concentration organisms suffer from

Gsdciency exhibiting characteristic symptoms; (.2) at a
range of medium concentrations organisms grow nor-
ma1ly; and (3) at concentrations above a critical level
the elements are toxic (Berry and Wallace, 198i). High
concentrations of trace eiements in the rhizosphere of
higher plants primarily damage the roots.
Consequently. they also affect other piant parts. The
threstlold ievcls of deflciency and of toxicity differ
rvidely for the various elements (Baker and Walker,
1989). In the nonessential eiements, only normal and
loxic concentration ranges (2) and (3) are found.

In most ecosystems potentiaily toxic traee elements

occur natlirally in an active form oniy in very small
quantities. Human mining activities have resulted in
an ever-increasing contamination of the biosphere
with potentially toxic trace metals (Nriagu, 1996). An
outstanding example is lead. Once this element was

lou

rather rare. It is now one of the most widely distributed
trace metals and it is more evenly distributed in the

terrestriai ecosystems than before (Neite et al., 1992;

Nriagu, 1992; Singh et al., 1997). The worldwide use of
leaded gasoline. which began in 1923, has resulted in
contamination of all ecosystems.

II. ESSENTIAL, BENEFICIAL, AND TOXIC
TRACE METALS

Several trace metals are essential for higher plants.

This means that (i) plants cannot complete their life-
cycle rvithout the respi:ctive elements; (2) they cannot
be replaced by other elements; and (3) they have a
specific function in plant metabolism (Marschner,
1986). For such elements the concentration range

between deficiency and toxicity varies widely.
Currently six trace elements are considered essential

for higher plants: boron. copper. iron, manganese,

molybdenum. and zinc. Two additional candidates

are chlorine and nickel (Marschner, 1986). Nickel
seems to be an essential micronutrient, although the

lailure io complete the life-cycle without nickel has

only been confirmed in few plant species (Gerendas

et al., 1999). Some elements, like cobalt, iodine,
sodium, silicon, and vanadium, are oonsidered benefi-

cial but not essential for plant growth (Marschner.

1986). A1l beneficial and essential elements cause toxi-
city symptoms i,vhen concentrations are high.

Nevertheless, they are not regarded as toxic elements.

tt,
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Only those exhibiting no essentiality are regarded as

toxic elements.
Because of the variability in the responses of various

plants to some elements. essentiality is sometimes dif-
flcult to ascertain. An insufficient supply of a plant
with an essential element causes specific deficiency
symptoms. Nonessential elements never cause defi-
ciency symptoms. even at extremeil,' lo'uv concentra-
tions. Hoq,ever. in a number of studies, unexplained
grou'th enhancements were observed in piants sub-

,jected to mild stress from toric trace elements. For'
example. root growth stimuiation ol Betulct penduict
seedlings u,as induced bi' loll concentrations of cad-
mium (Gussarsson. 1994). Enhanced root elongation.
root biomass gain, and root hair formation were lound
in plants of a tolerant population of Silene vulgaris
treated with lead chloride (Wierzbicka and Panufnik.
1998). Jiang and Liu (1999) reported stimulated root
growth of Brassica junceoplanls treated with low con-
centrations of lead nitrate.

III. EFFECTS OF TRACE ELEMENTS ON
EXTENSION GROWTH AND
DIFFERENTIATION OF ROOTS

Trace element effects on plants also depend on whether
the element is an essential nutrient or not. Inhibition of
root extension growth can result from interference with
cell division or with cell elongation. Trace elements
were shown to affect both processes. Slowing down
of the mitotic rate of root cells of Allium cepa, Zea
mays, arod Lupinus luteus was caused by high lead con-
centrations (Hammett, 1929, Przymusinski and
Wozny, 1985). It was hypothesized that such inhibition
is related to a lead-induced reduction of cell cycle pro-
teins, like cyclin (Deckert and Gwozdz, 1999).

Apparently lead has several effects. However, its
main influence on root growth was on root cell elonga-
tion (Garland and Wilkins, 1981; Sieghardt, 1981). The
elasticity of cell walls is so much reduced by lead or by
cadmium that under mechanical stress they may break
(Lane and Martin, 1982; Barcelo et a1., 1986).

A physiological explanation of root growth inhibi-
tion under lead stress suggests an increased level offree
radicals and of reactive oxygen species, which exceeds
the capacity of the antioxidant enzymes (Rucinska et

a1., 1999). This may resuit in reduced root growth.
Lead nitrate (10-2 M) had no effect on the emergence
ol the seminal roots of maize (Zea ntays) seedlings but
did affect root elongation after emergence. At 10-3 M
lead nitrate. the growth of primary and of other semi-
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nal roots was slolved down as a result of partial inhibi-
tion of cell division and cell elongation (Obroucheva et
a1., 1998). Lead stress also had marked effects on root
branching pattern and on root system morphology.

Lead toxicity lo Fagus s))lv-atica seedlings started at
a concentration of 48 pi.mol leadlkg soil. At lou,er lead
concentrations, root groivth was slightly enhanced
(Breckle et al.. 1988). Similar results were observed in
a culture experiment with young Picea ahies trees
(Hagemeyer et al., 1994). Root growth increased at
low soil concentrations of cadmium or zinc"
Holl,ever, at higher concentrations of both metals
root growth of Piceo and Iugus saplings was strongly
inhibited (Hagemeyer et a1., 1994). A slight growth
enhancement by ior,v metal concentrations depends
on the specific metal and is known in geueral already
since Sachs (1814).

Lead caused reductions in root elongation of Alliunt
r:epa abeady at concentrations of 0.1 gM lead nitrate
(Liu et al.. 1994a). The lead treatment caused irregula-
rities in mitoses. Nickel sulfate treatments up to 10 prM
resulted in stimulated root growth. but higher coltcen-
trations inhibited it. At high nickel concentrations irre-
gularly shaped nucleoli u,ere observed in root ceils (Liu
et ai., 1994b).

Structural and ultrastructural effects of copper
stress on Zea mays roots were reported by
Ouzounidou et al. (1995). Seedlings grown at higher
copper concentrations (80 p.m) exhibit damaged epi-
dermal cells of their roots. In other root tissues the
effects of such a copper level were varied. Cortical or
stelar cells with disintegrated cytoplasm were observed
next to cel1s with well-preserved structure. The root
ultrastructure was less affected by copper than their
morphology and physiology. The occurrence of
healthy cells in copper-stressed roots indicated a varied
response of the cells to such harmful conditions.

Inhibition of root elongation of Picea abies seed-
lings grown in nutrient solutions containing mercury,
cadmium, or zinc was reported by Godbold and
Hüttermann (1985). The order of toxicity was
Hg > Cd > Zn. Toxicity symptoms of mercury in
spruce seedlings, like decreased transpiration rates
and lowered chlorophyll contents in needles, were
attributed primarily to root damage (Godbold and
Hüttermann, 1988).

Ultrastructural alterations of root cells of Cajanus
cujan lreated with zinc sulfate or with nickel sulfate
and inhibitron of radicle elongation in seedlings were
described by Sresty and Madhava Rao (i999). Toxic
effects of Zn and Ni were correiated with their concen-
trations. Extensive damage to root ceils grorvn under
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metai stress was shown by EM. The nuclei of root tip
cells showed condensed chromatin strands. Some cor-
tical cells showed disruption and dilation of their
nuclear membranes. Other toxicity symptoms were
expressed by structureless cytoplasm, by disintegration
of organelles, and by the development of vacuoles.
Some cortical celis showed two nucleoli. The authors
suggested that this might be a result of the stimulation
of the nucleolus to increase the production of ribo-
somes and mRNA, which enhance the synthesis of
new proteins involved in the trace metal tolerance.

Effects of nickei sulfate (Z 10pM) on root growth
of Pisum satirum plants resulted in reductions of root

ension growth and a reduction of potassium con-
üentrations (Gabbrielli et al., 1999). The water content
of roots was negatively correlated with the tissue nickel
concentration. Roots under nickel stress had increased
phenol contents and higher extracellular peroxidase
activities. Such effects were indicative to a rapid senes-
cence. A selective cell death of damaged tissues may be
part of a defense stratpgy.

The chemistry as well as the physiological effects of
chromium are rather complicated (Barcelo and
Poschenrieder. 1997; Mishra eI al., 1991). Trivalent
and hexavaient chromium had somewhat different
effects on root growth of onion plants (Liu et a1.,

1992). At concentrations of 0.2-20pM hexavalent
dichromates reduced root growth more than Cr3+,
mostly by inhibition of cell division. Chromium inter-
fered with mitoses and caused chromosome aberra-
tions.

The effects of trace elements were also studied with
'l-grown plants. Soil treatments are usually better

r"omparabie to natural or field conditions than nutrient
solution erperiments. However, such conditions are
more difficuit to control and direct observations of
roots are restricted.

A standardized "artifictal soil" consisting of an ion
exchange resin embedded in an inen sand matrix was
proposed for studies of trace element effects on root
growth (Köhl, 1997). The metal ions are buffered b-v

the ion exchanger and the sand provides the mechan-
ical impedance like in naturai soils. Implementation of
this experimental technique should advance our under-
standing ol the root soii-trace element relationships.

Under natural conditions plant roots are rarely
exposed to stress from a single toxic element in the
soil. Various ions usually affect plant growth simulta-
neously (Hagemeyer, 1999). The interacrions of the
effects of different metals can be described as indepen-
dent. additive, synergistic, or antogonistic (Berry and
Wallace, 1981; Wallace, 1982). Such interactions

765

should also be considered in experimental studies. In
combination treatments. cadmium and lead showed
additive or even synergistic effects on root growth of
Fagtts sybaticc seedlings (Kahle, 1988; Breckle et al.,
1988; Kahle and Breckle, 1989). For instance, in a

treatment with 2.4 mmol Pb (kg soil)-t the roots had
only 35oÄ of the dry matter of the control. At 45 pimol
Cd (kg soil)-l, the root dry matter was 71% of the
controi. However, the two metals applied at the same
time reduced root grolvth to 29oÄ of the control. The
combination of the two metals (269 pmol Pb (kg
soil)-r* 178pmol Cd (kg soil)-l, ammonium acet-
ate-extractable fraction) reduced the root mass of sap-
lings signiflcantly more than application of each of the
ions separately. Another example for additive effects
was found with saplings of Picea abies (Hagemeyer et
al.,1994). Combined treatments with Cd * Zn reduced
root growth much more than either of the separate
treatments.

The effects of combinations of copper, cadmium,
and zinc on root growth of Silene vulgaris exposed
to single metals or binary combinations in hydro-
culture were nonadditive (Cu + Zn, Cu * Cd) or
antagonistic (Zn + Cd), when applied concentrations
were rather low. The nature of the combination
effects depended on the metal concentrations
(Sharma et a1., 1999). When one of the metals of
the combinations was applied in concentrations
above a critical toxicity ievel. synergism was the
predominant interaction.

Synergistic effects in seedlings of Sinapis alba, i.e.,
greater growth inhibilion, were found in combinations
of vanadium with nickel, molybdenuml or copper
(Fargasova, 1999). Vanadium and manganese had
mutually antagonistic effects. Manganese, molybde-
num. and copper were antagonists of nickel. In some
combinations no interactions of the metals rvere found.
Many such interactions between trace elements are
encountered in studies using soil or other complex sub-
strates. Although they pose addrtional compiicating
f-actors. they should not be neglected in realistic stu-
dies.

R.eactions of plant roots to trace elements can be

very sensitive. However, the outlined results demon-
strate the large variability in effective critical concen-
trations, which cause toxicity symptoms. This can be

observed even r,vithin the same species. Obviously the
effects of a certain element depend largely on substrate
conditions, particularly the presence of interacting
ions. It therefore seems questionable to establish criti-
cal upper levels of toxic elements, which can be toler-
ated by plants.
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IV. EFFECTS OF TRACE ELEMENTS ON
PLANTS OF VARIOUS LIFE FORMS
AND SYSTEMATIC CATEGORIES

Genotypic differences in resistance ro trace elements
lvere described for various wild plants (Ernst. 1982;
Baker and Proctor, 1990; Macnair, 1993). It has been
well known for a long time that the flora of mining
areas is resistant to toxic levels of such mostly metallic
eiements. Those . piants were named metaliophytes
(Duvigneaud and Denaeyer De Smet. 1963). In some
species or ecotypes resistance is restricted to one partt-
cular element: in others, cotolerance to two cr severai
trace elements occurs (Cox and Hutchinson, 1979).

Very few species of trees are found among metallo-
phytes (Ernst. 1985). During their long life span" trees
accumulate large amounts of toxic elements when
growing on contaminated soils. They generally lack
the morphological or physiological adaptations that
regulate internal concentrations of toxic trace ele-
ments. which are found in variäus herbaceous plants.
Some exceptions can be found among mangroves and
other halophytic trees (Hagemeyer, 1990, l99j:
Breckle, 2000). Therefore, most trees can survive only
on less contaminated substrates. where trace element
concentrations in their tissues do not exceed critical
levels (Ernst, 1985). There are, however, a very few
specialized tree species which thrive on metal-enriched
soils. An outstanding example is Sebertia acuminata
(Sapotaceae), a Ni hyperaccumulator from New
Caledonia. It has a remarkable capacity for nickel
accumulation (Jaffre et al., 1976; Sagner et al., 1998).

The survival strategy of most trees on metal-rich
sites seems to rely on the phenotypic plasticity, which
enables tree root systems to avoid soil regions of high
contamination (Dickinson et a1., 1991; Turner and
Dickinson, 1993). Plants vary in their response to
trace eiements not only among various life forms but
also among various taxa. The subclass Caryophyllidae
is a systematic group with many resistant members. A
variety of trace element-resistant genera belong to the
Caryophyllaceae and Plumbaginaceae. Some
Brassicaceae are also typical metallophytes. Root
growth can be used as an indicator of trace metal resis-
tance. In this way the lead responses of 23 different
plant taxa were compared by Wierzbicka (1999).
Under the applied experimental conditions four groups
of plants were distinguished: (1) species with the high-
est tolerance growing on mine waste heaps, like Silene
vulgaris or Leontodon hispidus; (2) species with high
constitutional tolerance, llke Biscutella laevigata or
Zea ma-vs; (3) species with intermediate constitutional
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tolerance, llke Allium cepa grown from seeds, Triticunt
vulgare, Pisum satiyum, or Secale cereale; and (4) spe-
cies with low constitutional tolerance, iike Brassica
napus or Phaseolus vulgaris.

Taxonomic relations are, however, not aiways reli-
able indications for the trace element resistance of a
species. The necessary mechanisms have apparentlv
evolved several times independently. The physiotype
concept (Albert and Kinzel, l9l3; Kinzel, 1982;
Choo and Albert. 1999). proposed for the classiflcatior
of halophytes, has not yet been applied to metallo-
phytes, with the exception of cadmium (Kuboi et a1..,

1986). This concept ol a chemical characterization of
various groups of piants b,v distinct ion patterns
deserves further consideration in the case of trace ele-
ment-resistant plants.

V. PLASTICITY OF ROOT DEVELOPMENT
IN RESPONSE TO ENVIRONMENTAL
CONDITIONS

Root development within a species is a result of a
broad genetrc disposition enabling the species to cope
with a wide range of soil factors (Carlson and Bazzaz,
1977; Taylor and Allison, 1981; Stienen, 1985; Fitter,
1991; Chapter 2by Fitter in this volume). In different
horizons of the soil proflle concentrations of nutrient
and trace elements can show spatial as well as temporal
variations. Such edaphic variations stimulated the evo-
lution of the remarkable plasticity of root systems.

The effects ol different soil layers on the develop-
ment of Fagus sylvatica roots were investigated using
growth chambers. In homogeneous substrate, root
development of beech plants was faster than that of
roots growing through three horizontal layers of
soils, which differed in metal concentrations (Fig. 1)
(Breckle and Kahle, i992; Breckle, 1996). Stressed
roots (240 p"mol Pb (kg soil)-r), after reaching a hor-
izon of low heavy metal stress (48 or 14 pmol pb (kg
soil)-l), grew slightly faster than unstressed roots from
the control growth chambers. This indicates an
enhanced recovery growth. Characteristics of a distinct
soil layer affect root growth and architecture. Also, the
heterogeneity and patchiness of the soil profiie have an
effect.

Different parts of the root system of a plant, i.e., tap
roots, basal roots, or lateral roots, can react differently
to metal toxicity. This is another aspect of the plasti-
city of root development under stress. In an experiment
with aluminum the lower layer in containers with stra-
tifled soil had toxic concentrations. whereas the upper
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lead treatment, whereas with 48-pM lead root growth
was slightly inhibited. Aeroponic plants had a stronger
and larger root system with well-developed root hairs.
In contrast, hydroponic plants had stronger and larger
shoots and fewer roots with no root hairs. This can
partly explain wh1, aeroponic plants, which develop a
larger root surface" were much more sensitive to lead
(Christlieb and Weber, 1980; Engenhart. 1984).

VI. DEVELOPMENT OF ROOT HAIRS

The development and turnovel' ol root hairs plav a
major role in the establishment of an efficient water-
and mineral-absorbing root system (Gilroy and Jones,
2000; Chapter 5 by Rrdge and Karzumi in thrs
volume). The root hair density of Raphanus' salivus.
when grown in hydroponic culture, decreased with
increasing lead concentrations (Lane and Martin.
1980). The lower density coincided with their earlier
collapse under reiativeiy low coflcentrations of copper,
nickel, or cobalt (Blaschke, 1977; Patterson and 01son,
1983). Thus, absorption capacity for the toxic element
and effective absorption time of the root hairs were
distinctly reduced. This was shown for various crop
plants as well as for young Betula trees. At the same
time, the lower root hair density will exert a negative
effect on the absorption capacity ofwater and ofnutri-
ents (Engenhart, i984).

Plants of a lead-tolerant population of Silene ,-ul-
garis from southern Poland and of a nontolerant popu-
lation were treated with 2.5 mg Pb L-r. After l0 days
ol treatment, roots of toierant plants rvere covered
with root hairs on 100% of their surface, whiie non-
tolerant plants had hairs only on 60-68% of the root
surface (Wierzbicka and Panufnik, 1998). At higher
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lead concentrations of 5 mg L-1, the root hair length
of the tolerant plants was somer.vhat smaller, but not as
much as that of the nontolerant plants.

VII. DEVELOPMENT OF LATERAL ROOTS

trt is generally accepted that tl-re development of laterais
determines the architecture of growing root sysiems.
Adaptational changes of root architecture may be
important for plants to survive on sites wrth a strong
metai stress. where soil is a heterogeneous n-losaic ci'
patches with different chemical anci physicai proper-
ties. In seedlings of Pit'eo aäie.s grou,,n lor 4 iveeks ia
solutions containing 0.5pM Pb, growth of prirnarl,.
secondar_v" and tertiary roots was reduced (Go<ibold.
and Kettner, 1991). The initiation of lateral i"oots
was more sensitive to lead than the growth of already
established older roots.

The development of laterals of second and third
order in Fagus sylvatlcrz roots was slightly stimulated
by increased lead concentrations (Table 1). Such an
increase can be explained bv the decrease of the growth
of the primary roots. The number of laterals of second
and third order was higher. Therefore, the total length
of all the roots of a system remained constant,
although the primary roor was shorter (Table l).
Dense branching of the root system is a typical
response to damage of root tips. The architecture of
root systems of beech trees was altered by lead from a
loose to a more compact, branched structure. This was
also demonstrated by experiments with cadmium and
with combined applications of cadmium and lead
(Bertels et al., 1989). In contrast, the density of lateral
roots of maize decreased in a nutrient solution with
24 ltM Pb, but increased again to the original level in

Table 1 Total Number of Lateral Roots ol Various Orders per Plant, Percentage of Short Roots (< 2 mm long) Among All
Laterals' and Length of the Unbranched Main Root of Fagus sylvatica Seedlings Grown lor 40 Days in Root Chambers in
Soil with Various Ammonium Acetate Extractable Lead Concentrations

Pb (prmol/kg)

115 1 3602tt4814.4

Number of laterals
flrst order
second order
third order

Total number of lateral roots
Percentage of short roots
Length ol main root lrom tip to flrst larerals (mm)

110

121

1.5

238

36.6

3 5.,1

87

195

1.0

283

39.4

37.6

70

189

9.6
268

43.5

JJ.J

47

180

14.0

24t
46."7

24.3

4.1

1.2

0.3

s.6

53.8

6.0

.Soarce: Breckle (1996)
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a higher lead treatment (Malone et al., 1978). This was
explained by the need for a minimum stimulus to acti-
vate dictyosomes to export lead ions actively out of the
ce1is.

Stimulated branching of roots under trace metal
stress as a result of damage to the root tips by cad-
mium, lead, or zinc with effects on the formation of
lateral roots in the herb Ocimum sanctum and in a
metal-tolerant cultivar of the grass Festuca rubra was
also reported by Cadiz and Davies (1997). In both
species the metals at concentrations up to 10pM sti-
mulated the formation of lateral root primordia. Zinc
had the strongest inducing effect. The authors also

served a reduction in the size of the apicai root mer-
..rem under metal stress. They suggested that this effect
is similar to a chemical decapitation, which releases the
dominance effect of the root apex and thus increases
the number of lateral root primordia.

An enhanced development of laterals was observed
in various crop piants grown with increased but non-
toxic copper levels (Blaschke, 1977'). Under such con-
ditions, the root systems showed a denser and more
compact structure and the rates of water uptake had
decreased. This was shorvn to occur in Fagas under
lead stress (see above) and in Trifoliunt under manga-
nese, copper, and zinc stress (Vogel, l913). Indications
for the same phenomenon were given by Rastin et al.
(1985) shoiving an enhanced dieback oflateral roots in
spruce under increased levels of trace metals in forest
soils. To some extent such a dieback can be balanced
by the growth of new laterals. Under strons lead stress
(.> 2llprmol (kg soil)-r.t an enhanced devjopment of

rond-order laterals was observed (Breckle et a1.,
,r88). Such flushes might cause periodic cycles of
growth, development, and death as part of a survival
strategy (Altgayer, 1979). Control plants and stressed
plants apparently had different growth cycles.

The densitl, of laterals is not only determined by the
number ol deveioping primordia, but also by the eion-
_sation of the main roots. The architecture ol the rooi
s)'stems af Zea n?d-):s \vas changed by soiution of 1 mN,[
lead nitrate. The growth and number of later-als was
not altered, but their distribution along the roots r.vas
denser and the branching zone of the main root was
shorter. This rvas caused by a reduced length of the
mature cells in the primary roots. Thus, the lead-
induced inhibition of primary root grorvth resulted in
a more dense arrangement of laterals (Obroucheva et
al., 1998), which is almost a general rule.

Results obtained so far show that the root architec-
ture of plants under trace element stress is altered to a
more dense and compact structure. The metal-induced
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stimulation of the development of laterals often leads
to a more densely branched root system.

VIII. UPTAKE AND ACCUMULATION OF
TRACE ELEMENTS

Root uptake of lead, cadmium, or other trace elements
depends on pH, the mobility of the trace elements, and
the developmental stage of the plants. The binding
capacity of the sorl and, thus, the extent of the plant-
available fraction of an element is a soil characteristic,
but the latter depends also on the uptake abilities of
specific roots.

An element of comparatively low mobility in soils
and in plants is lead. Lead is passively absorbed into
the root tip of seedlings of Zea mays, mainly by thin
epidermal cell walls in the meristemic region (Tung and
Temple, 1996). Only limited quantities of lead entered
into protoplasts. As cells matured, accumulation of
lead in cell walls increased. Both short- and long-dis-
tance transport of lead were apoplastic. When the con-
ducting vascular tissue in the root center had
differentiated, lead entered into the conducting sys-
tems. It was also absorbed from the water-absorbing
zone of the roots, but these quantities remained in the
root cortex. The Casparian strip was an effective bar-
rier for lead, but transport through passage cells was
possible. Such results underline the comparatively low
mobility of lead in piant tissues. The same was
observed in roots of Brassica juncea where consider-
able amounts of lead from the treatment solutions were
accumulated in the röots. while only small quantities
were transported into hypocotyls and shoots (Liu et
a1., 2000).

The localization ol trace metals in cells and tissues
ol plant roots can be determined with x-ray microana-
lysis and similar techniques. The distribution of metals
rn roots of water hyacinth (Eichhornia crassipes)
showed distinct patterns (Vesk et al., 1999). Iron was
found accumulated at the root surface, e.g., in root
plaques known from wetland plants (see Section XV;
Ye et al., 1997). Concentrations of iron decreased cen-
tripetally. Their were higher in cell walls than within
cel1s. In contrast, the trace metals copper, ztnc, and
ieaci were not found on the root surface. Their levels
increased centripetally and were higher inside the cells
than in the walls. Highest leveis were found inside the
cells of the stele. Although some distribution patterns
ol elements could be described, the authors caution
against general interpretations, since the individual
variability of the sampled plants was large.
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The complicated solution chemistry and speciation
of chromium also affects root absorption. Uptake and
translocation of chromium by 11 species of common
vegetable crop plants supplied ivith either Cr3+ or
CrOl- r,vere studied (Zayed et al.. 1998). A speciation
analysis indicated that in the roots of all tested plants
CrO?- was converted to Cr3+. The translocation of
chromium fron-r roots to shoots was lin-rited.

Accumulation in roots was about 2 orders ol n-ragni-

tude higher than in shoots, regardless of the chromium
specres in the nutrient solution" Highest concentrationr
were found in crop speg.ies of the Brassicaceae familv.
e.g.. cauliflower" kale. or cabbage.

Silicon is a major inorganie constituent o1 inar-Y

hrgher plants (grasses, conifers. Eqttisetwtt, eic.), but
it is rarely considered in btological studies. It might
turn out to react as a trace element in some plant
groups. In nutrient soiutions silicon absorption of'the
roots of Triticunt aestivunt was rapid (Rafi and Epstein.
1999). Nearly mature plants that were preioaded with
silicon shorved the same absorpfion rates as plants pre-

viousl-v grown in solutions ivithout silicon addition.
The authors give two reasons for this observation:
(1) About 90% of the absorbed silicon was transported
to the shoots and the roots maintained a low silicon
status which promoted further uptake. (.2) The
absorbed silicon is iargely immobilized in insoluble
form. Thus, there was no negative feedback from
shoots to roots and the silicon uptake continued una-
bated.

There is growing concern about the radioactive con-
tamination of the environment, particularly after acci-

dents in nuclear power stations and industries.
Investigations of the mobility of radionuciides. e.g..

isotopes of cesium or strontium, in ecosystems also

have to consider root uptake and mobilitv of these

isotopes in plants with respect to their alkaline earth
or alkali metal chemistry (Carini and Lombi, 1997;

Jones et al., 1998; Entry et al., 1999; Guivarch et a1..

1999; Zh't et a1., 1999). A comparative study of the

root uptake of cesium-l34 of 30 different plant taxa
was presented by Broadley and Willey (1997). They
found lowest accumulations in slow-growing
Gramineae and highest accumulations in fast-growing
Chenopodiaceae. This was observed after a short-term
exposure of the -plants. If radiocesium uptake of
Chenopodiaceae is also high during long-term expo-
sures, implications for food contamination and the

potential of such plants for phytoremediation of con-
taminated soils should be considered.

The uptake of trace elements into roots depends on
the ionic milieu of the rhizosphere. With hydroponi-
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cally grown Sinapis alba plants interactions in the
uptake of various trace metals were found
(Fargasova and Beinrohr, 1998). Root accumulation
of vanadium rvas inhibited by nickel. manganese, and
copper, and the accumulations of nickel or manganese

were both inhibited by copper. Horvever. none of the

tested metals inhibited copper accumulation.
Mani/ loxic effects of trirce elements result fioln

their repiacement of calcium at vital sites of cell mem-
brares in root cells" Absorption ol Cdr* by roots oi-

T'ontcn'ir aphvlla was markedlv' inhibited by increasiiig
concentrations of Cal+ in the solrrtion (Hagemeyer anrJ

Waisel. 1989). Magnesium ions were less effective ir
reducing Cdr- riptake. Moncr.'aient rons (tl"a-" K+.
i-i*) aiso reduced Cdr- uptake, but to a lesser extent
than divalent ions (Hageme),-er, 1990). An optimal sup-
p1y olcalcium or magnesium can considerabl;v alleviate
the toxicity of some trace elements (Wilkins. 1957:

Wallace et a1., 1980; Hagemeyer and Waisel, i989;
Hagemeyer, 19901 Skorzynska-Polit et ai.. 1998:

Saleh et al.. 1999).
Not only the calcium status of a plant but also the

phosphorus supply determines uptake of trace ele-

ments in a specifi.c way (Wallace et al., 1978).

Furthermore, the form of nitrogen suppl,v can affect
the toxicity of trace metals (Zornoza et a1., 1999).

The nickel tolerance of Heliantlrus urLnuus was lowest
when grown with nitrate alone. Simultaneous supply
with nitrate and ammonium reduced nickel toxicity.

IX. RESPONSE TO LONG.TERM
EXPOSURE OF PLANTS TO TRACE
ELEMENTS FROM GEOGENIC
SOURCES

A constant, long-term exposure of Artemisia vulgaris

plants to slightly increased concentrations of lead

along roadsides has given rise to the selection of
lead-resistant ecotypes (Helming and Runge, 1979).

Similar ecotypic variation was also found in Salix
and Betula in biotopes affected by ore mining (Denny
and Wilkins, 1987a-c).

Ore deposits and similar remnants from mining
operations have a rather high total content of various
trace elements. However, the plant-available fraction is

usually much lower (Wenzel and Jockwer, 1999). This
is the reason that sometimes a great variety of plant
species can grow on ore deposits rich in lead, zinc, or
other trace elements. For example, in the area of
Stolberg, an o1d mining site south of Aachen,

Germany, birch trees are growing rveli on mounds of
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l, re smelter ash with total lead concentrations reaching
1 0-20 g (kg substrate)-1.

High zinc concentrations are often found on ore
. utcrops in mining areas. There are impressive geno-
,,pic differences in Zn resistance among certain species

I f the natural vegetation (Ernst, 1982; Macnair, 1993).
! 'he mechanisms of zinc resistance are in principle simi-
icr to those of copper resistance. Compartmentation
y lays a major role at the ce1lular, tissue, or organ
rrvel. At the cellular level, zinc is accumulated in the

vacuoles (Harmens et al., 1993b).
Serpentine is a common name for a number of rock

ilpes that contain ferromagnesian minerals. Owing to
i.igh 'oncentrations of magnesium and iron, such
rock- are called ultramafic (Proctor, 1999). After

"eathering, ultramafi.c rocks produce soils with natu-
? ally elevated levels of trace elements. They are found
cn all continents (Roberts and Proctor, 1992).

:erpentine soils have increased concentrations of
r ickel, chromium, or cobalt as well as unlavorably
low caicium/magnesium ratios (Menezes de Sequeira
and Pinto da Silva, 1992; Rodenkirchen and Roberts,
.1993; Shallari et al., 1998; Proctor, 1999; Ater et a1.,

1000). This poses severe problems to plant growth. A
: recialized flora with many endemic species has devel-
, ped on ultramaflc sites (Arianoutsou et a1., 1993).

., ome species have a remarkabie potential for trace
i lement accumulation; nickel concentrations in their
, raves can reach the 1oÄ range. Plants are called hyper-
.\ccumulators if the concentration of a trace metal reg-

slarly exceeds 0.1% under natural conditions (Baker
rnd Brooks, 1989; Greger, 1999). Many hyperaccumu-
Latir species were found in the genus Alysst,tm

i Mo^.,son et al., 1980). Some accumulating species of
i iis genus showed root grou,th in solutions with nickel
r cncentrations Llp to I mM. wirereas root growth of a

; onaccumulating species ll'as inhibited even by traces
of nickei. Tr,vo serpentine species with differing resis-

f rrnce strategles were studred by Gabbrielli et al. (1990).

S'i.lene itoliccr lirnits its nickel uptake. Root gror,vth lvas

iirhibiteil by a suppression cl mitotic activitl in root
.i i ps zrt i.5 pM nickel in the culture solution. The same

r oncentration did not affect root growth i* Aly'ssutrt

fiertolonii. which is a nickel accumulator. A caicium
!.'upply of i5 mM reversed the effects of nickel on

r,rot grorvth rn Siiene. but in l/,r'ssunt t-lte addition of
C rlciurn reduced root grorvth. This finding demon-
:/:rates thal Alt,ssun't hertolonii is aiso adapted to low
( llcium concentrations in the substrate, which is typi-
r l1 for serpentine soils. Concentrations of nickel in
I /rots and shoots of this species reached 0.3oÄ ar'd
r.6oÄ of the dry weight, respectively (Pandolflni and
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Pancaro, 1992).It is amazing that a piant can tolerate
such high concentrations of a toxic element in its live
organs.

In several hyperaccumulating Alyssum spp. it was

shown that exposure to nickel caused an increase of
free histidine in the xylem sap (Krämer et a1., 1996).

The authors suggested that nickei tolerance is based on
an enhanced production of histidine, which serves as a
chelator of nickel in the xylem sap. The transport of
the toxic ions from the roots into the shoot is thus
promoted.

Hyperaccumulators of other elements, like cobalt.
copper, or chromium, were also found (Baker and
Brooks, 1989). For instance, Brassica pekinensis was
identifled as a hyperaccumulator of lead (Xiong,
1998). Such plants have a potential use in phytoreme-
diation of metal-contaminated soils (Saxena et al.,
1999). Furthermore, recent research demonstrated a

defensive function of accumulated metal ions against
herbivores and pathogens (Boyd and Martens, 1998;

Sagner et al., 1998; Boyd and Moar, 1999).

X. EFFECTS OF RARE EARTH ELEMENTS
ON ROOT GROWTH

The rare earth elements (REE), or lanthanides, are

often left out of the biological studies. This group
includes the 14 elements with atomic numbers from
58 (cerium) to 71 (lutetium) as well as the elements
lanthanum, scandium, and yttrium (Greenwood and
Earnshaw, 1986). In spife of their name, most of
these elements are not realiy rare in nature. For
instance, in the earth crust cerium is flve times more
abundant than lead. The total concentration of the

REE in the earth crust is - 0.01% (Ho1leman and
Wiberg, i995). In general, the REE with even atomic
numbers are more abundant than those with odd
atomic numbers. a fact known as "Harkins rule"
(Holleman and Wiberg, 1995). The phi,'sical and che-

mical properties of the different REE are similar. The
ions of REE are mostly trivalent. There are ;' 100

minerals knorvn to contain REE. and the different ele-

ments olten occur in groups in the minerals
(fjreenwood and Earnshaw, 1986).

In comparativel-v lew studies root uptake and accu-

mulation of REE in higher plants were investigated.
One reason ma,v be insufficient detection limits of
older analytical methods, since the REE occur in
plants in rather 1ow concentrations (Markert, 1987;

Breckle, 1997; Fu et al., 1998). Several studies were

made in Cirina, owing to widespread use of REE in
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agriculture and industry in that country (Yang et al.,

199e).

The uptake of scandium lScr+) into root tips of
three different cultivars of Sorghum bicolor was deter-

mined by short-term (10-min) uptake studies
(Wilkinson and Duncan, 1992). In root tips of the

acicl soil stress sensitive cultivar accumulation of non-
extractable (water" EDTA). scandium ions increased

with decreasing pH of the grov.,th medium. However.
nonextractable scandium did not increase in root tips

of the tested cultivars that were tolerant to acid soil

stress. The study shorved a strong effect ofpFI on scan-

dium accumulation.
The REE levels in Citrus l.ree samples in Florida

were correlated with soil concentrations (Wutscher

and Perkins. 1993). The highest concentrations were

found in feeder roots. ranging from 4.6 to 585 1ig g-r
Accumulation of REE by sugarcane (Sacchartutr

fficinarum) was possibie via the leaves rvhen sprayed

on leaf surfaces or via the roots,after soil application
(Chua et ai., 1998). Root uptake was determined in
piants grown on soil sprayed with a microeiement fer-

tiiizer containing nitrates of various REE, including
cerium and lanthanum. Root uptake showed a linear
correlation with REE concentrations of the soil. The

absorbed quantities of REE were mobile in the plants
and were accumulated in all parts. The authors con-

cluded that high concentrations of REE in the soil

could result in harmful effects for humans consuming
sugarcane products.

The chemical speciation in the soil, chelation, bind-
ing forms, and bioavailabitity of REE were addressed

in several studies. Sun et al. (1997) studied the effects of
EDTA on the uptake of lanthanum, gadolinium, and
yttrium from nutrient solutions by 2-week-old wheat
(Triticum sp.) seedlings. Addition of EDTA to the

nutrient solution reduced the accumulation of the ele-

ments in the roots, but increased their accumulation in
stems and leaves. Roots showed a comparatively
higher accumulation capacity than the aboveground
parts. The REE concentrations in the roots were line-

arly correlated with concentrations in the nutrient
solutions in the tested range of 0-4 ppm. This was

found with both the ionic and the EDTA-complexed
forms of the elements.

A similar resuit was described lor wheat (.Triticum

sp.) plants grown in soii (Yang et ?1., 1999).

Bioaccumulation ol all the elements (lanthanum, cer-

ium, samarium, gadolinium, and yttrium) in roots was

much higher than in stems and leaves. Uptake was

increased by EDTA additron to the soil, which resulted

from desorption of REE ions from soil compounds.
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A sequentiai extraction procedure was used to
determine the distribution of REE in different chemical
fractions of Mollisols in China. Samples of Zea rnays

and Oryza.ratlva plants growing on the soils were ana-

lyzed (Li et a1.. 1998). Concentrations in plant parts

followed the order root > leaf > stem > grain. Totai
soil concentrations or the sum of all extracts of the

sequential extraction procedure were not useful indica-

tors of REE plant uptake. The acetate-extractable frac-

tion of REE in the soil rnight piay a role in ccntrolling
plant uptake. FIowever. the authors conciuded that a

more accurate speciation analysis method is necessary

to establish a relationship between REE sneciation in

soil and the bioavailability.
Comparatively little is knorvt.t about the ellects of

the REE on growth and development of roots cf
higher plants. An ertensive study wrth roots of maize
(Zea ma,rs) and mungbean (Vigna radiatu) seedlings

revealed that the relative root elongation of both spe-

cies was inverseiy correlated with lanthanum or cerium
concentrations in the solution (Diatloff and Smith,
i995a). Mungbean was more sensitive than maize.

Cerium \Ä'as more toxic than lanthanum to mungbean.
The concentration causing 50% reduction of mung-

bean root eiongation was 0.9 pM cerium and 3.1pM
lanthanum. To maize roots lanthanllm was more toxic.
Concentrations causing 50% reduction of maize root
elongation were 12.2pM cerium and 4.8pM lantha-
num at pH 5.5.

Lanthanum at concentration . i pM enhanced

elongation of maize and mungbean roots but not
root dry matter accumulation. Transport of La to
the shoot was blocked and it accumulated in the

roots. Similar results were obtained for cerium
(Diatioff and Smith, 1995b, c).

The effects of REE were examined by REE spraying

at the end of the tillering phase of sugarcane,

Saccharum fficinarum (Pan et a1., 1993). It increased

the activity of Na-K-ATPase in root cells. The vigor of
root systems, the amount of rhizosphere bacteria and

enzyme activities in the soil were increased. As a result,
growth rate and yield of the plants were increased'

The cytoiogical effects of praseodymium oxide and

neodymium oxide (1-5 ppb) on root tip cells of Vicia

faba caused chromosomal aberrations and mitotic
anomalies in various proportions (Singh et al., 1997).

Depending on the concentration and duration of the

treatment, abnormal meta- and anaphase ce11s were

recorded. These effects were similar to aberrations
induced by radiation and radiomimetic chemicals.

Europium ions (Eu3+) influenced the contents and

composition of anthraquinones in root cultures of the
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lhinese medicinal plant Cassia obtusilblia (Guo et al.,
998). Thus, the production of secondary metabolites
n plants can be affected by REE.

Roots of water hyacinth (Eichhornia crassipes')
remove iarge quantities of europium(Ill) from water.-fhis 

species is used for decontamination of polluted
vater. In the roots, intraceilular europium ions are
rrobably complexed by organic acids (Kelley et a1.,

?000).
The varied effects of the different REE on root

gowth of plants require further attention. Research
rhouid particularly focus on synergistic or antagonistic
rffects of combinations of several REE on plant
lrc h, since the naturally occurring REE, minerals
lsriärr! contain combinations of various elements.

(I. PHYSIOLOGICAL BASIS OF TRACE
ELEMENT TOLERANCE

lhe evolution of trace element resistance is sti11 a mat-
.er of discussion. The basic question is whether the
.race element resistance in higher plants is controlled
)y one or a few genes or by the combined action of
nany genes (polygenic control). Macnair (1983) pre-
;ented evidence that the copper tolerance of Mimulus
luttatus is controlled by a single major gene.
\ccordingly, he argued that there must be a single
rhysiological or biochemical process which generates
.he tolerance required for the colonization of toxic soil.
)ther physioiogical differences between tolerant and
rontolerant plants may occur which are manilestations
rl' sequent genetic changes to improve the degree of
rdap,ation. A similar result was found for the copper
.olerance of Silene vulgaris (Schat and Ten Bookum.
1992). With results lrom crossing experiments ol Silene
'tulgaris piants from populations differing in copper
-olerance it rvas suggested that copper tolerance ol
.his species is under the control of tr.vo major genes
'Schat et a1., 1993). and the tolerance level seems ro
re controlled by two addttionai genes. The authors
:onciuded that all these genes are in.rolved in the con-
-roi ol an exclusion mechanism operating at the plasma
lembrane.

hr a review of the responses of higher plants to
:admium it was concluded that cadmium detoxifica-
:ion is probably a complex phenomenon under poly-
genic control (Sanita di Toppi and Gabbrielli, 1999).
Ihe results ol earlier studies using grasses and herbs
were taken as evidence lor polygenic control of trace
metal tolerance (Wilkins, 1960; Bröker, 1963:
Urquhart, 1971; Gartside and McNeilly, 1974).
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Besides investigation of the genetic basis of trace
element tolerance, it is also necessary to further eluci-
date the physiology of mechanisms that enable metai-
lophytes to survive on contaminated substrates.
Furthermore, it will be important to clarify the regu-
latory mechanisms involved in uptake and turnover of
essential trace elements that are required in very low
concentrations. Toxic effects of high internal concen-
trations can be aileviated by a number of physiological
mechanisms. These depend on rates and mechanisms
of uptake, on translocation along root tissues, and on
the properties of the trace element.

The biological effects of trace elements on water
relations, especially the primary toxicity mechanisms
of the different metai ions, may be as different as
their chemical properties{.g., valency, ion radius,
redox potential, and stability of organic complexes
(Barcelo and Poschenrieder, 1990; Poschenrieder and
Barcelo. 1999). The metal ions can induce a sequence
of biochemical and physiologicai alterations (Foy et
al., 1978' Lepp, 1981) by damaging membranes and
altering enzyme activities (Kennedy and Gonsalves,
1987). A multitude of secondary effects have been
observed, such as disturbances of the hormone bal-
ance, deficiency of essential nutrients, inhibition of
photosynthesis, or changes in carbon ailocation.

One mechanism of trace element resistance is to
avoid toxic accumulations of such elements in sensitive
plant parts, iike meristems. In some plant species, this
is achieved by reduced root uptake. Also, the translo-
cation from root cortex to xylem vessels can be slowed
down. Toric elements are.-therefore sequestered outside
the root symplasm or in ipecialized tissues outside the
endodermis. In roots of Beiula. Zn accumulated in ceiis
of the endodermis when the roots were subjected to
concentrations below the 1ethal threshold (Denny and
Wilkins, 1987a,b). The distribution of cadmium in
roots of Phaseolus t,ulgaris plants was investigated
after cultivation in cadmium containing nutrient soiu-
tions (Vazquez et a7., 1992). The accumulation ol cad-
mium decreased from outrr to inner parts of the root
cortex. Only small amounts were detected in the endo,
dern-lis. As the endodermis constitutes a barrier to ion
iransport, root cortex cells usuall1,' contain higher ele-
ment concentrations than ce11s in the central vascular
cylinder.

A study ol the ultrastructural localization of lead in
roots of Allium ce.p.z suggested protective mechanisms
against lead in root tip cel1s (Wierzbicka, 1998). Plants
were treated with lead added to nutrient solutions as

chloride or nitrate. Lead accumulated in the apoplast
of root tips. Based on ultrastructural observations. the

tl
j
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author hypothesized that there are two protective
mechanisms against lead in the root tips of onion: (l)
The amount of polysaccharides in the cell walls and the
thickness of the rvalls increase^ which allorvs a larger
retention of lead outside the cytoplasm. (2) Lead is
exported from the cells through plasmatubules to the
root tip apoplast. In this way lead levels in the sy6-
plast are kept lorv.

Another strategy of metal resistance found in cer-
tain cases is the accumulation of toxic ions in cell
vacuoies. A zinc-malate shuttie mechanism was pro-
posed for the transport of zinc ions through the cyto-
plasm rnto the vacuole lMathys. 1977; Ernst et a1..

1992). This hypothesis needs further investigation.
Using isolated oat (.Ayenct satit'ct) root tonoplast vesi-
cles, it was found that ions of zinc. manganese. cad-
mium. or calcium could be transported by metal, H'
antiport mechanism into the plant vacuole (Gonzalez
et a1., 1999). This antiport mechanism seems to be
metal speciflc. since in the same system of oat root
tonoplast vesicies no NilH antip*brt was found (Gries
and Wagner, 1998). In this study the vacuoles were not
a major compartment for nickel accumulation. Also,
no heavy metal accumulation was found in leaf cell
vacuoles of Silene vulgaris plants from a heavy
metal-poiluted mine dump (Bnngezu et al., 1999).

Plants can avoid detrimental effects on sensitive
physiological processes in cells by immobilization and
sequestration of toxic trace elements. Specialized mole-
cules with large numbers of negatively charged groups
capture trace element cations in the cytoplasm.
Metallothioneinlike proteins were found in roots of
plants, which are similar to metal-binding metailothio-
neins from animals and fungi (Tomsett and Thurman,
1988; Robinson et al., 1993; Prasad,1999). In generai,
such molecules have large numbers of sulfur-contain-
ing amino acids, like cystein. which bind cations to

-SH groups. A copper-binding thionein was found in
roots of a copper-resistant strain of Agrostis gigantea
(Rauser and Curvetto, 1980). In roots of maize a Cd
binding protein appeared after subjecting the plants to
cadmium stress. This protein contained 40% cystein
(Rauser and Glover, 1984).

Additionally, smaller metal-binding polypeptides
were discovered in plants and named phytochelatins
(Grili et al., 1985). In most cases they consist of only
three different amino acids: glutamic acid, cystein, and
glycine. The polypeptide chain is a repetitive sequence
of poly(gamma-glutamylcysteinyl)glycine. Chain
length and proportions of the constituents vary in dif-
ferent plants (Robinson and Jackson, 1986; Narender
Reddy and Prasad, 1990: Rauser, 1990; Prasad, 1999).
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Such compounds were found in various members of
the Fabales (e.9." Phaseolus vulgaris, Glycine max)
and assumed to bind and immobilize toxic trace metals
(Grill et ai.. 1986).

Similar cadmium-binding poiypeptides were
observed in root tissue of six different piant species
including sunflower. soybean. and potato grown
under cadmium stress (Fujita and Kawanishi. 1987).
The authors concluded that 1ow-molecular-weight cad-
mium-binding complexes play a role in the trace ele-
ment resistance of plant roots, the organ directly in
contact with the noxious metals. Also" roots of pepper
plants (Capsit'um arutuunr) exposed to cadmium stress
responded rvith increased phytochelatin eoncentrations
(Jemal et a1.. i998). Higher levels of phytochelatins
r.vere lbund in roots of cadmium stressed Silene yulgari.c

plants than in control plants. More than 609,'o of total
cadmium in the roots was bound to polypeptides. It
was suggested that the cadmium sequestration by poly-
peptides plays a role in cadmium resistance of the
plants (Verklerj et al., 1990). However. this assumption
was challenged by the findings ol other authors. When
subjected to copper stress, both sensitive and resistant
genotypes of S. vulgaris produced phytochelatins in the
root tip. Thus. the differential copper resistance of this
species did not depend on differential phytochelatin
production (Schat and Kalff, 1992).

Also, the zinc resistance of S. tulgaris was not due
to increased phytochelatin production (Harmens et al.,
i993a). Under cadmium stress, sensitive strains of S.
vulgaris produced more phytochelatins in root tips
than resistant genotypes. Thus, phytochelatins may
serve to chelate and detoxify cadmium. However, the
cadmium resistance of some varieties did not depend
on an increased production of such polypeptides (De
Knecht et al.. 1994). Synthesis and accumulation of
phytochelatins tn Phaseolus coccineus plants depended
on the growth stage in which cadmium was added to
the nutrient solution (Tukendorf et a1., 1997). Only
when cadmium was applied in an early growth stage
was a high accumulation of phytochelatins observed.
The contributions of trace element-binding polypep-
tides or proteins to metal resistance appear to be not
fully understood. This problem should be tackled in
future research.

XII. TOXICITY TESTS USING ROOT
GROWTH PARAMETERS

The growth of roots of higher plants is a sensitive
indicator of trace element toxicity (Hagemeyer,
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1999). Effects of trace elements on different growth
parameters of roots, like elongation or branching. are
detectable at low substrate concentrations. Based on
this observation, a number of short-term test systems
for biotoxicity of metals were proposed (Köhl and
Lösch, 1999). Wilkins (1957) described a method to
determine the lead tolerance of different genotypes of
Festuca ovina originating from soils with different lead
concentrations. Tillers of the test plants were grown in
hydroculture with added lead. Root elongation was
measured at daily intervals. Differences in the growth
rates indicated varied degrees of lead tolerance of the
plants.

More recently, a rapid screening method for chemi-
-als involved in environmental hazards was developed.
(Liu et a1., 1995). A test using roots of onion (Alliunt
cepa) was proposed. It is based on a previously
described "Allium test" (Fiskesjö, 1935). Onion bulbs
are placed in the test liquids which are daily renewed.
The bulbs are allowed to sprout and to produce roots
for 2196 h in beakers, protected from light. Then root
samples are cut and fixed in Carnoy's reagent. For the
examination of chromosome and nucleus morphology
the fixed roots are squashed in carbol-fuchsin solution.
A silver-staining procedure is used to examine changes
in the nucleoii.

In order to examine the described Alliunt test tech-
nique. Liu et al. (1995) used salt solutions of 1 I difler-
ent trace elements in tap water at pH 6.5. The applied
concentrations range<1 from 10 i to l0 IM. The
effects of the tested metals on cell division and nucleoli
in root tip cells depended on the concentration and the
luration of the treatment. The metals caused irregula-

,rties of chromosomes. nuclei and nucieoli, like c-mito-
sis, chromosome bridges, chromosome stickiness" or
irregularly' shaped nuclei and nucleoli to varying
degrees. Based on the concentrations that caused ser-
ious toxic effects the metals could be divided into three
,qroups: the flrst group o_f highest toricity included n-ier.-
curl'and cadmium (10 10 5 M); ihe second group of
mediuur toxicitl, included zinc, iead, copper, nickel.
cobalt, aluminunr. and chromium (i0-a i0 3 M); and
the third group of 1ou, toriciti- included manganese
and magnesium (10 'Ut. fnir test appears to be a

sin-rple and fast" but sensitive. screening technique
A bion-ronitoring method for the cadmium contam,

ination of soil and lvater using growth parameters of
mungbean (Phuseolu.s aureus) roots was devised bi,
Geuns et ai. (1997). The toxicity threshold value for
root elongation was an internal cadmium concentra-
tion of 25 lLgl g root dry weight. Above this concen-
tration sterol synthesis in roots \Ä,as reduced.
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Cadmium increased the stigmasterol-sitosterol ratio
and induced a redistribution of sugars in roots. At
internal cadmium levels of 100 pelg dry weight an
increase of polyunsaturated fatty acids in roots was
found. The polyamine synthesis was strongly affected.
At a cadmium concentration of the medium of 100
y"lM the synthesis of putrescine was sixfold increased.
When mungbean seedlings are used as biomonitors of
cadmium toxicity, the most sensitive parameters are
the root growth reduction and the putrescine accumu-
lation in the roots that occurs belore any growth
reduction is detectable. In situations where funds
are limited and an extensive laboratory infrastructure
is not available, the uncompiicated root tests can offer
reasonable aiternatives to microorganism-based toxi-
city tests.

XIlI. MYCORRHIZA AND TRACE ELEMENT
RELATIONS OF PLANTS

The symbioses of plant roots and fungi, cal1ed mycor-
rhizae, are a widespread phenomenon (Varma and
Hock, 1999; see also the Chapters 50 by Kottke and
49 by Sreber in this volume). Effects oimycorrhizae on
trace element relations of plants have been repeatedly
investigated (Leyval et a1.. 1997). Two aspects were
intensively studied: effects of mycorrhizae on trace ele-
ment resistance of higher plants. and enhancement of
nutrient absorption by mycorrhizae.

Ectomycorrhizae with Paxillus in,-olutus could ame-
liorate Zn toxicity iq some varieties of birch (Brown
and Wilkins. 1985; Denny and Wilkins, 1987c,d). The
mycorrhizal associat,on ol Pinus sylvestris with
Paxillus involutus reduced the toxic effects of, cadmium
and zinc on root elongation (Hartley-Whitaker et al.,
2000). The infection of the roors wirh the fungus
ciecreased the transport of cadmium or zinc to the
trees shoots. Grorvn on contaminated substrates. the
mycorrhizal hyphae contained.vacuoles with accumu-
lated cadmium (Turnau et al.; 19931. This rs considered
a detoxification mechanisrl that reduces the trace ele-
ment burden. The localization of trace metais in roots
of Picea d&les seedlings colonized with the fungus
Hebeloma crustulinif'orme was studied with x-ray
microanaiysis (Brunner and Frey" 2000). Cadmium
was found mainly in the Hartig net. Nickel was
detected in the Hartig net and in cell walls of the cor-
tex. Zinc occurred in the Hartig net, cortical cell walls,
and the lungal mantle.

In laboratory experiments ectomycorrhizae of var-
ious fungi with roots of Pinus sylvestis seedlings were
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investigated (Colpaert and Van Assche, 1993). Uptake
of cadmium was highest in the nonmycorrhizal con-
trol; thus, a protective effect of the symbiosis against
cadmitim toxicity was concluded. In contrast, the
mycorrhizal association of Cor.t,lus avellana rools
wilh Tuber albiduru did not prevent chromium accu-
mulation iri the roots (Strati et a1., 1999). Agrostis
capillaris showed a negative correlation between cop-
per concentrations of the soil and the degree of mycor-
rhizal infection cl the roots (Griffioen et a1., 1994).

However. in an area contaminated rvith cadmium
and zinc the rn,vcoi'rhizal fungi had evolr,ed resistance
to these metals and can thus play a role in the trace
element resistance of this grass. The symbiotrc ectomy-
corrhiza does not always reduce metal toxicity in forest
trees. The amelioration depencis on the species and
strain of the ectomycorrhizae as weli as on the metal
(Godbold et al.. 1998.1.

N{ycorrhizae can also stin-ruiate the absorption of
trace elements by plant roots (Erqst. 1985). The uptake
of zinc by endomycorrhizal roots of .4raucaria cunning-
hantii ard by ectomycorthiza], roots of Pinus radiata
was enhanced as compared to uninfected controls
(Bowen et a1., 1974). In this same way the symbiosis
can enhance root acquisition of mineral nutrients in
soils of poor nutrient availability (Dehn and
Schüepp, i989: Faber et al., 1990; Clark and Zeto.
1996; Caris et a1.. 1998; Clark et al.. 1999). However.
transport of cadmium and zinc to the shoots of lettuce
was lower in mycorrhizal plants. The metai retention in
roots was attributed to complexation by cystein-con-
taining ligands of fungal proteins (Dehn and Schüepp,
1989). Such a mechanism can also suppofi the trace
element resistance of plants.

The enhancement of plant metal uptake by mycor-
rhizae could irnprove the eliciency of the phytoreme-
diation of contaminated soils. In the three grass species
Paspalum notatum, Sorghum halpense, and Panicum
virginatunt, plants inoculated with the fungus Glomus
sp. had higher radioisotope concentrations (137Cs and
e0sr1 in the plant tissue (Entry et al., 1999). Plant bio-
concentration ratios were higher in mycorrhizai plants
than in uninoculated plants. The authors concluded
that sites contaminated with radionuclides can be effec-
tively cleaned with mycorrhizal plants.

The outlined results show that there is no simple
and straightforward interpretation of the effects of
mycorrhizae on trace element relations of plants.
Apparently, these effects depend on both partners of
the symbiosis as well as on environmental conditions.
The assumption that a plant gains additional resistance
to toxic trace elements from the association with a
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symbiotic partner needs detailed investigation in each
particular case.

XIV. EFFECTS OF PLANTS ON SOILS

It is well knorvn that trace elements in the soil affect the
development of plant roots. On the other hand, the
i'oots of plar.rts can affect the concentrations of plant-
availabie trace metal fractions in the soi1. Plant roots
can mobilize or immobilize soii minerals (},{cCutrl"v.

1999: Chapter 36 by Nerimann and Römheld in this
volume). Consequently. root growth of all plants
grou,ing in such a soil is then influenced.

For elements like iron and manganese the mobiiit_v
and the ai,ailabilitlv for root absorption is controlled bv
the oxidation status of the soil. Plant roots that pene-
trate the soil layers can alter the oxygen partial pres-
sure in the rhizosphere. Thus. the roots can affect the
accumulation and the mobility of elements in their
vicinity. This was shown for Spartina townsendii arrd
Atripler portulacoides effect on a wetland soil from a

salt marsh in Ireland (Doyle and Otte. 1997). The sait
rrarsh soils are effective sinks for trace elements in
ecosystems. The soil pool of trace elements that is
influenced by the studied plants can have considerable
effects on the biogeochemistry, accumulation, and
plant availability of the trace elements (Doyle and
Otte, 1997).

Another aspect ofplant effects on soils concerns the
interaction with rhizosphere bacteria (Wenzel et a1..

1999). The role of such microorganisms in facilitating
selenium and mercury accumulation in roots of .the
wetland plants .Scirpus robustus and Polypogon mon-
speliensis was studied by De Souza et al. (1999). In a

laboratory experiment the plants were treated with the
antibiotic ampicilline to inhibit growth of rhizobac-
teria. The root uptake of selenium and mercury was
significantly lower than in plants without ampicilline
treatment. When axenic Scirpus plants were inoculated
with bacteria isolated from the rhizosphere of field-
grown plants the accumulation of selenium and mer-
cury was significantly higher than in axenic controls.
The authors concluded that rhizosphere bacteria can
promote the accumulation of selenium and mercury in
roots and shoots of wetland plants. The nature of the
stimulating effect is as yet unknown. Several possible
effects of the rhizobacteria were discussed: (1) stimula-
tion of production of compounds like siderophores
which facilitate metal absorption by roots; (2) increase
of root surface area by stimulation of root hair growth;
(3) transformation of the trace elements into more
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readily absorbable forms; (4) increase of selenium
uptake by stimulation of the sulfate transport protein
which also transports selenate; and (5) reduction of the
rhizosphere pH, which enhances mercury absorption
into roots. The stimulating effect of rhizobacteria on
trace element absorption is important when plants are
used for phytoremediation of contaminated soils
(Wenzel et al., 1999; Saxena et a1., 1999).

Piant roots can also reduce the mobility of trace
elements in the soil. In pots with Agrostis plants copper
activities in the soil solution were 2 orders of rnagni-
tude lower than in bare pots without vegetation. It was
conciuded that the plant growth affects soil pH, the
'issolved organic carbon concentration, and the cal-

-rum concentration of the soil solution to such an
extent that the total dissolr,ed copper concentration
and the free metal activity in the soil were reduced.
In this way potentially toxic metals can be immobilized
in the soil by the action of plant roots (Römkens et al.,
1e99).

The multiple interactions among plant roots, soil
microorganisms, and the soil matrix are complex.
Nevertheless, such relations should be studied in detail
under realistic field conditions. This will improve our
understanding of trace element effects on plant growth.

XV. TRACE ELEMENT DEFICIENCIES

The key symptom of iron deficiency in leaves is chioro-
sis, caused by' an inhibition of chloroplast develop-
ment. In many plant species iron deficiency is also

ssociated with inhibition of root eiongation, increase
,n the diameter of apical root zones and an abundant
root hair formation (Römhe1d and Marschner, 1981).
trt can alsc be connected r.vith the development of a

typical rhizodermai cel1 q,all labyrinth as in other
transf-er cells. This seems to be part of a regulatorv
inechanism which enhances iron uptake (Kramer et
a1.. 1980). It was lound cr-riy in those plant species
that can acidify 'rhe rhizosphere (Römheld and
Kramer, 1983). Ircn deflciency stress can stimulate
ihe activity of ihe enzyme Fe(ill)-reductase. which is
associated with plasma membranes in root cells. The
enzym catalyzes the reduction of Fe(IiI) to Fe(Ii),
which is more readil-v absorbed b1, roots. This was
shown far Pisuru sotiltunl plants (Grusak et al., 1993).
The plasma membrane bound reductase svstem can
also increase the uptake ol other trace elements. like
copper and manganese. It has been suggested that it
plays a general role in cation absorption of roots
(Norvell et al., 1993: Welch et a1.. 1993).
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Under conditions of iron deficiency graminoid spe-
cies can release substances from their roots, which
mobilize Fe(III) by chelation (Marschner et al., 1986,
1987; Römheld and Marschner, 1990; Chapters 35 by
Jungk and 36 by Neumann and Römheld in this
volume). The chemical nature of these substances,
sometimes called 1ow-molecular-weight organic acids,
or phytosiderophores, varies with species. Compounds
like mugineic acid or avenic acid were found in root
exudates. Studies with iron-deficient barley (Hordeum
vulgare) roots suggest that phytosiderophores of the
mugineic acid family are secreted from roots as mono-
valent anions through anion channels (Sakaguchi et
al., 1999). The Fe(III) chelates are transported into
root cells (Takagi et a1., 1984; Marschner, 1986). The
release of phvtosiderophores is stimulated by iron defi-
ciency. They can also mobilize other trace elements,
like copper, zinc, and manganese (Römheld and
Marschner, 1990).

In iron-deficient wheat plants the released phytosi-
derophores mobilized also zinc in the rhizosphere and
in the root apoplast (Zhang et al., 1991). The same was
found for cadmium (Cieslinski, et ai. 1998). In different
cultivars of wheat (Triticum turgidum), cadmium accu-
mulation was proportional to the levels of low-mole-
cular-weight organic acids in the rhizosphere.
Apparently these substances have a role in the solubi-
lization of cadmium in the soil solution. The phytosi-
derophore release of the efficient cultivar of wheat
(u,ith respect to zinc absorption efficiency) under con-
ditions of zinc deficiency was higher than the inefficient
variety (Cakmak et aJ., 1994). The principal compound
was 2'-deoxyimugineic acid, rvhich was aiso released
under iron deficiency. The authors concluded that an
enhanced release ofphytosiderophores under zinc defi-
ciency stress may be the reason for an eflicient zinc
trptake in certain gramineous species.

While most authors report stimulation of metai
uptake by secreted lorv-molecular-u,eight organic sub-
stances, Saber et a1. (1999) reaehed a different conclu-
sion. In hydroculture experirnents u,ith sunflower
(llelicmthus annutrs). they found that aluminum and
zinc ions stimulated the release of malic and citric
acid from roots. Experimental additions ol these

organic acids into the growth medium to some extent
alleviated inhibitory effects of the toxic ions on plant
grorvth. The authors concluded that the tolerance
rnechanism of sunflower plants against toxic ions
includes metal exclusion through secretion of organic
acids into the rhizosphere, which reduces the uptake of
the toxic ions. An additional mechanism is internal
tolerance by chelation of toxic ions in the cytoplasm.
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Most metal ions are much more readilv absorbed in
a reduced lorm (Mn2+, F.'*, etc.) than in oxidized
form. Apparently, most plants are able to reduce
metal ions in the vicinitir of their roots. This is tacili-
tated by changes of pH of the rhizosphere. but also by
exudation of reducing substances. Many questions
remain open: Hor.v can plants achieve a balanced ion
uptake to serve their particuiar needs with the help cf
rather unspecilie chelators? In rvhich wa1, do the
exuded chelating substances interact with ion-complex-
in.u compounds of the soil? Are there other plant
groups with particuiar substances such as the iron-side-
rophores of- grasses? For erample. rnugineic acid and
avenic acid are typical ph,,-'tosiderophores of ai1
grasses. but not ol members of other graminoid
famrlies, as Commelinaceae. Cyperaceae, and
Juncaceae (Mino et al.. 1983: Takagi et al.. 1984:
I\{arschner. 1986).

The special iron mobiiization of grasses is important
under a normal or low supply of,iron (see Chapter 36
by Neumann and Römheld in this volume). What hap-
pens under conditions of high iron concentrations,
such as at lou, pH and under 1ow Or? Whereas iron
deficiency occurs more frequently. iron toxicity is rare.
In habitats rvith periodically submerged soils, rvhich
are poor in 02. iron and other metallic ions are present
in a reduced state. Fe(II) is more soluble than Fe(III)
and can thus cause toxicity symptoms. Such toxicitl,
can appear in paddy flelds. The roots of such plants are
covered r.vith thick crusts of brownish Fe(III) com-
pounds (see also Chapter 56 by Beyrouty in this
volume). Iron deposits on roots were shown to amelio-
rate toxic effects of excess copper (Greipsson, 1994).
On the surfaces of roots and rhizome s of Spartina rncn -

itinta plants of intertidal areas in Portugal metal-
enriched rhizoconcretions were found (Vale et al.,
1990). They contained up to 117o iron. large amounts
of manganese, and variable amounts of other trace
elements. The ecological implications of trace element
accumulations in the rhizospheres of some plant spe-
cies deserve further investigarion.

Data on the effects of either deficiency or toxicity of,
Mn on roots are scarce. In Mn-deficient plants the
formation of iateral roots ceased completely (Abbott,
1967). There was an increase in the number of smail
nonvacuolated cells in these roots. This would indicate
that ce11 elongation is more sensitive to manganese
deficiency than cell division. The formation of manga-
nese oxide plaques u,as described for rice (Or-vza sotiva')
plants in hydroculture (Crowder and Coltman, 1993).
Special adaptations to high levels of manganese supply
are not known.
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XVI. OPEN QUESTIONS

An interesting but as yet unsolved question is horv and
r.vhy ver1,' 1ow concentratior.rs of toric trace elements
can stimulate piant growth to some extent. The
described aller,iaiion ol trace element toricity by ca1-

cium and other major nutrients also deserves at special
attention.

Some plani groups have e'olr.etl their own peculiar
spectrum ol ecological and physiological adaptations
For instance, grasses have rieveloped effective regula-
torv meehanisms at the rooi levei. ln grass shoots^ the
element content. even olt oi'e soils. tends tc be much
tower than in broadleaf herbs, The sea,rch for compai.-
abie. special adantations" on the physrological cr bio-
cliemical level. ir: other plant lamiiies should be
intensified.

In view of the rvidespread occurrence of m-vcorrhi-
zae, the effects of such svmbiosis on trace element reln-
tions of higher plants should be considered in ail
studies. For reasons of practicality, these phenomena
are often neglected in traboratory experiments.
Thereflore. it seems necessar-v to conduct more experi-
ments under realistic fie1d conditions. u,hich include
such important lactors.

Owing to rapid developments in molecular biologi-
cal studies, the investigation of the genetic control of
trace metal toierance of higher plants rvill certainly be
pushed forward in the future. The major questions are
still whether the tolerance mechanisms are under
mono-. oligo-, or polygenic control and how these
mechanisms have evolved.
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